
Lesson 2B ɀOperations, Characters,
Mixing Data Types, Order of Operations

By John B. Owen

All rights reserved

©2011, revised 2015

Å Objectives

Å Operators

Å Character primitive, ASCII system

Å Mixing data types

Å Lesson Summary / Labs
Å Contact Information for supplementary materials

Table of Contents

Å The student will understand how
Java operations work with the
various data types

Å The student will have a more in-
depth understanding of the char
data type

Objectives

Å The student will also understand
how to mix variable types and how
the JAVA order of operations works.

Å The JAVA order of operations,
PMMDAS is introduced and
explored

Objectives

Å A few of the standard binary operators
in JAVA are:

Å = assignment
Å == ȰÉÓ ÅÑÕÁÌ ÔÏȱ
Å != ȰÉÓ ÎÏÔ ÅÑÕÁÌ ÔÏȱ
Å + addition, String concatenation
Å - subtraction
Å * multiplication
Å / division
Å % modulus

BINARY OPERATORS

Å4ÈÅÙ ÁÒÅ ÃÁÌÌÅÄ ȰÂÉÎÁÒÙȱ ÏÐÅÒÁÔÏÒÓ
because they perform their function
on two items, one on each side.

Å There are some operators that are
ÃÁÌÌÅÄ ȰÕÎÁÒÙȱ ÂÅÃÁÕÓÅ ÔÈÅÙ ÏÎÌÙ
operate on one item, like the
ÎÅÇÁÔÉÖÅ ÓÉÇÎȟ Ȭ-ȭȟ ÏÒ ÔÈÅ ./4
ÓÙÍÂÏÌȟ ȬȦȭ

Binary vsUnary

Å.ÏÔÉÃÅ ÔÈÁÔ ÔÈÅ ȬϽȭ ÏÐÅÒÁÔÏÒ
performs two different functions:
Å Numerical addition

Å String concatenation

Å This is common in programming,
ÃÁÌÌÅÄ ȰÏÖÅÒÌÏÁÄÉÎÇȱ ÔÈÅ ÏÐÅÒÁÔÏÒȟ
which is a good thing.

Å)Ô ÍÅÁÎÓ ÔÈÅ ȬϽȭ ÏÐÅÒÁÔÏÒ ÃÁÎ ÈÁÎÄÌÅ
several situations.

Overloaded operators

Å The ȬЂȬoperator is used to give
values to variables and constants.

Å The ȬЂЂȬoperator is used to check
for equality.

Å It is important to keep clear the
difference between the two.

Å The ȬȦЂȬchecks to see if two values
are NOT equal to each other.

ȬЂȬ ȟ ȬЂЂȬȟ ÁÎÄ ȬȦЂȬ

Å The most common mistake among
ÎÏÖÉÃÅ ÐÒÏÇÒÁÍÍÅÒÓ ÉÓ ÔÏ ÕÓÅ ÔÈÅ ȬЂȬ
ÔÏ ÃÈÅÃË ÆÏÒ ÅÑÕÁÌÉÔÙȣÆÏÒÔÕÎÁÔÅÌÙ
the compiler will usually catch this
for you and not allow it.

ȬЂȬvsȬЂЂȬ

Sample program with operators

In the program shown below, you see several examples of operator use.

Study the whole program carefully and compare it to the output .

Sample program with operators
Lines 5-10 use the ȬЂȬ operator to assign values to the variables num1through num6.
Å num1and num2are each assigned an integer.
Å num3is assigned the sum of two integers using the ȬϽȭoperator.

Å The values 7 and 9 are first added together in a temporary memory location,
and then the resulting value is placed into the num3memory location.

num1

3

num2

5

num3

16

num4

24

num5

8

num6

- 12

Sample program with operators
Å The variable num4is assigned the product (using the Ȭɕȭoperator) of a previously

assigned variable, num1, and a literal integer value 8.
Å num5ȰÇÅÔÓȱ ɉÉÓ ÁÓÓÉÇÎÅÄ ÔÈÅ ÖÁÌÕÅ ÏÆɊ ÔÈÅ ÄÉÆÆÅÒÅÎÃÅ ɉÕÓÉÎÇ ÔÈÅ ÓÕÂÔÒÁÃÔÉÏÎ

operator) of two variables, num4and num3.
Å num6gets the difference between a literal value 12 and the variable num4.

num1

3

num2

5

num3

16

num4

24

num5

8

num6

- 12

Assignment ɀright to left operation
Å It is very important to understand that an assignment statement is a right to

left operation.
Å This simply means that the right side of an assignment statement is always taken

care of first by the compiler.

Assignment ɀright to left operation
Å If an operation on the right side of the assignment operator is a multi-term

expression and needs to be calculated first, it is handled in a temporary location,
and then the resulting value is placed into the memory location of the variable.

Å In line 7 below, the values 7 and 9 are first added together, then assigned to
num3.

num3

16

temp

7+9

Assignment ɀNEVER left to right
Å Finally, it is equally important to realize that an assignment operation is NEVER a

left to right action: 7 + 9 = num3 is NOT allowed, as you can see in line 7 of
ÔÈÅ ÐÒÏÇÒÁÍ ÂÅÌÏ×ȦȦȦȦ 4ÈÅ ÃÏÍÐÉÌÅÒ ×ÉÌÌ ÔÈÒÏ× ÁÎÏÔÈÅÒ ȰÆÉÔȱ ÁÎÄ ÒÅÐÏÒÔ ÁÎ ÅÒÒÏÒ
statement!

Å The left side of an assignment statement must ALWAYS be a variable or
constant.

Two different output statements
Å Examine closely the first two output statements.
Å They both do the same thing: output three variables with spaces separating

each, but they work differently.
Å One is a println statement, and the other a printf. You should be familiar with

how the printf statement works from Lesson 1.

num1

3

num2

5

num3

16

num4

24

num5

8

num6

- 12

String concatenation
Å Notice that the printlnÓÔÁÔÅÍÅÎÔ ÕÓÅÓ ȰϽȱ ÏÐÅÒÁÔÏÒÓȟ ÂÕÔ ÔÈÅ ÖÁÌÕÅÓ ÁÒÅ ÎÏÔ

numerically added.
Å)ÎÓÔÅÁÄ Á ÐÒÏÃÅÓÓ ÃÁÌÌÅÄ ȰÃÏÎÃÁÔÅÎÁÔÉÏÎȱ ÏÃÃÕÒÓȟ ÔÈÅ ÊÏÉÎÉÎÇ ÏÒ ÃÏÎÎÅÃÔÉÎÇ ÏÆ Ô×Ï

strings together into a longer string.
Å(ÅÒÅȭÓ ÈÏ× ÉÔ ×ÏÒËÓȣ

num1

3

num2

5

num3

16

num4

24

num5

8

num6

- 12

ȬϽȭ ÏÐÅÒÁÔÏÒ ÐÒÏÃÅÓÓ
Å7ÈÅÎ ÔÈÅ ȬϽȭ ÏÐÅÒÁÔÏÒ ÉÓ ÁÂÏÕÔ ÔÏ ÄÏ ÉÔÓ ÊÏÂȟ ÉÔ ÆÉÒÓÔ ÍÕÓÔ ÄÅÔÅÒÍÉÎÅ ×ÈÁÔ Ô×Ï

things are involved.
Å In line 7, it sees two integers, therefore it numerically adds the two values.
Å However, in the printlnÓÔÁÔÅÍÅÎÔȟ ÔÈÅ ÆÉÒÓÔ ȬϽȭ ÏÐÅÒÁÔÏÒ ȰÓÅÅÓȱ ÁÎ ÉÎÔÅÇÅÒ ÖÁÒÉÁÂÌÅ

on one side, and a string on the other.

num1

3

num2

5

num3

16

num4

24

num5

8

num6

- 12

ȬϽȭ ÏÐÅÒÁÔÏÒ ÐÒÏÃÅÓÓ
Å7ÈÅÎ ÅÉÔÈÅÒ ÏÒ ÂÏÔÈ ÉÔÅÍÓ ÉÎ Á ȬϽȭ ÏÐÅÒÁÔÉÏÎ ÁÒÅ Á 3ÔÒÉÎÇȟ ÃÏÎÃÁÔÅÎÁÔÉÏÎ ÉÓ

performed automatically, creating a new String, in this case, ñ3 ñ.

Å The next operator sees the String ñ3 ñ (the result from the first operation) and
the variable num2, and creates another String, ñ3 5ñ.

num1

3

num2

5

num3

16

num4

24

num5

8

num6

- 12

ȬϽȭ ÏÐÅÒÁÔÏÒ ÐÒÏÃÅÓÓ
Åñ3 5 ñand ñ3 5 16ñcomplete the four part concatenation process,

resulting in one long String, which is then output by the println method.
Å In summary, the println statement waits until the concatenation operations are

completed, and then outputs the final result.
Å It DOES NOT output each term one at a time.

num1

3

num2

5

num3

16

num4

24

num5

8

num6

- 12

ȬЂЂȬ ÁÎÄ ȬȦЂȬ ÏÐÅÒÁÔÏÒÓ

num1

3

num2

5

num3

16

num4

24

num5

8

num6

- 12

Å4ÈÅ ȬЂЂȬ ÏÐÅÒÁÔÏÒ ÃÏÍÐÁÒÅÓ ÔÈÅ ÖÁÌÕÅÓ ÏÎ ÅÉÔÈÅÒ ÓÉÄÅ ÏÆ ÉÔȟ ÁÎÄ ÒÅÐÏÒÔÓ true if they
match, falseÉÆ ÔÈÅÙ ÄÏÎȭÔȢ

Å4ÈÅ ȬȦЂȬ ÄÏÅÓ ÔÈÅ ÏÐÐÏÓÉÔÅȣÒÅÐÏÒÔÓ trueÉÆ ÔÈÅÙ ÄÏÎȭÔ ÍÁÔÃÈȟ falseif they do.
Å Pretty simple, huh?
Å7ÏÒÄ ÏÆ ×ÁÒÎÉÎÇ ɉÆÏÒ ÎÏ×ɊȣÏÎÌÙ ÕÓÅ ÔÈÅÓÅ ÏÐÅÒÁÔÏÒÓ ÏÎ ÐÒÉÍÉÔÉÖÅÓȟ ÎÅÖÅÒ

objects. More on this later.

ȰÃÈÁÒȱprimitive data type

Å .Ï× ÌÅÔȭÓ ÅØÁÍÉÎÅ ÔÈÅ ȰÃÈÁÒȱ ÄÁÔÁ ÔÙÐÅ
in more detail.

Å As discussed earlier, it belongs to the
integer data type family, requires 16
bits to store, and represents characters
from the ASCII and Unicode universal
system of characters.

Å Characters are simply integers in
disguise!

ASCII vsUnicode

Å ASCII (American Standard Code for
Information Interchange)is a
system of symbols used in the
English language.

Å As technology spread worldwide,
the Unicodesystem developed
from the ASCII system, spanning a
much broader spectrum of
language systems.

http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/Unicode

óAô óaô ó0ô

Å The three most important
characters you must learn and
memorize are óAô, óaô, and
ó0ô(zero).

Å Each one has an integer value
associated with it that is a part of
the ASCII system.

óAô óaô ó0ô

Å Here they are. Memorize them!

Å óAô = 65

Å óaô = 97

Å ó0ô = 48

Å Once you know these, you can easily
figure out any other letter or digit.

Å &ÏÒ ÅØÁÍÐÌÅȟ Ȭ"ȭ ×ÏÕÌÄ ÂÅ άάȟ ȬÂȭ Ђ ίήȟ
ÁÎÄ ȬΧȭ Ђ Ϊίȟ ÁÎÄ ÓÏ ÏÎȢ

charmap

Å Each computer
has an application
that shows the
ASCII/Unicode
system.

Å Type charmapat
the Run prompt of
your computer,
and you will get
this window:

